

B.Sc. II Semester Degree Examination, April/May - 2019 **PHYSICS**

Heat, Thermodynamics and Waves and Oscillations

			PAPER	- 2.1				
. ,			(Old))				
Time: 3 I	Hours				Maximu	ım Marks :80		
Instruction	ns to C	Candidates:						
1.	Se	ction -I is comp	oulsory.					
2.	An	swer any Four	questions each f	rom S	Section -II and from Secti	on - III.		
•			SECTIO	N-I				
1. Answ	ver any	y twelve of the	following:			(12×1=12)		
A. (se the correct a						
i		At what temper at S.T.P?	rature is the r.m.s	speed	l of molecules of hydrog	en is twice that		
	a) 273K		b)	546K			
	c) 819K		d)	1092K			
ii	i) V	Vhich of the fo	llowing is a sudo	den pr	ocess.	•		
	a)) Isotherma	1	b)	Adiabatic			
	c)) Isobaric		d)	Isochoric			
						•		
ii	i) T	he temperature	e at which Joule	-Tho	mson effect is zero is ca	lled.		
	a)	Critical ter	mperature	b)	Neutral temperature			
	c)	Temperatu	are of inversion	d)	None of these.			
iv	iv) At resonance, the intensity of the resultant sound is.							
	a)			b) .	·			
	c)	Maximum		d)	Unpredictable	* * * * * * * * * * * * * * * * * * * *		

c) Maximum

	В.	Fill	in the blanks:	
	i	i)	Entropy remains constant in all	
,	i	i)	Air can be liquefied by process.	
	ii	ii)	When the temperature of a black body is doubled the total radiation emitted by the black body increases by times initial value.	ed
	iv	v) -	Microphone works on the principle of	
C	. St	tate '	True or False:	
•	i)		Maxwell's law of distribution of velocities gives probability of velocity on nolecules.	of
	ii)		Vien's law of radiation holds good in the shorter wavelength region of the pectrum.	ie
	iii)	E	nergy is transferred by stationary waves.	
D.	Ans	swei	the following in one or two sentences:	
	i)	St	ate carnot's theorem.	
	ii)	W	hat is the perfect black body?	
	iii)	W	hat are beats?	
	iv)	WI	nat are sound transducers?	

SECTION-II

 $(4 \times 4 = 16)$

- 2. What is mean free path? Obtain an expression for it.
- 3. Obtain an expression for work done in an isothermal process.
- 4. Explain adiabatic demagnetisation process.
- 5. Explain the distribution of energy in the spectrum of black body radiation.
- 6. What are free, damped and forced vibrations.
- 7. Explain briefly the working of microphone with diagram.

SECTION - III

 $(4 \times 13 = 52)$

- 8. a) State the law of equipartition of energy of a dynamical system. Calculate γ (gamma) the ratio of specific heat at constant pressure to constant volume for a monoatomic, diatomic and triatomic gas.
 (9)
 - b) 10⁻³ m³ of hydrogen at 27^oC expands isothermally until its volume is doubled, find the work done. Given R=8.314 JK⁻¹ Mol⁻¹. (4)
- 9. a) Deduce Clausius and Claypeyrons equation. Explain the effect of pressure on boiling point and melting point. (9)
 - b) Calculate the increase in entropy when 0.01 Kg of ice melts into water without change of temperature. Assume specific latent heat of water is 3.36×10⁵ JKg⁻¹. (4)

[P.T.O.

10. a) Describe Joule-Thomson porous plug experiment. Out line the theory Thomson effect.	of Joule- (9)
b) Vander waals constant for a gas are a=0.0245 m ⁴ N mole ⁻² ; b=2.67×10 ⁻⁵ R=8.4 J mole ⁻¹ K ⁻¹ calculate the temperature of inversion.	m ³ mole ⁻¹ . (4)
11. a) State and prove stefan's law of radiation, write a note on wien's displac	ement law.
b) Calculate the energy radiated per minute from the filament of an incande at 2000 kelvin if the surface area is 5×10 ⁻⁵ m ² and its relative emittance	escent lamp is 0.85. (4)
12. a) Derive Newton-Laplace formula for velocity of sound in a medium. Discu of pressure and density on the velocity of sound.	ss the effect (9)
b) The velocity of sound in air at NTP is 330 ms ⁻¹ . At what temperature will be 418 ms ⁻¹ .	the velocity (4)
13. a) Obtain the relation Intensity and amplitude of sound wave.	(5)
b) Derive the expression for progressive wave in one dimension.	(4)
c) The equation of progressive wave is given by	
$y = 5\sin(10\pi t - 0.1\pi x)$ where x and y are in metre and t in second. Calcula frequency, time period and velocity of the wave.	ite amplitude,

B.Sc II Semester Degree Examination, April /May- 2019

PHYSICS

Heat, Thermodynamics and Waves and Oscillations

PAPER - 2.1

(New)

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1) Part A: Answer all questions
- 2) Part B: Answer any FIVE questions

PART-A

1. Answer the following questions.

 $(10 \times 1 = 10)$

- a) Define mean free path.
- b) State first law of thermodynamics.
- c) State carnot's theorem.
- d) Define entropy.
- e) Define temperature of inversion.
- f) What is a black body?
- g) What is a free-free rod?
- h) What is progressive wave?

[P.T.O.

- i). Define resonance.
- j) What are beats?

PART-B

 $(5\times10=50)$

- 2. a) State and prove the principle of equipartition of energy.
 - b) Calculate the rms velocity of oxygen molecules at 27° C. Pressure of oxygen at NTP=1.0129×10⁵N/m² and density of oxygen at NTP = 1.43 kg/m³. (7+3)
 - a) What is heat engine? Derive an expression for the efficiency of heat engine in terms of temperature of source and sink.
 - b) The efficiency of carnot engine is 50% when the temperature of the sink is 400k. Find the temperature of the source. (7+3)
 - a) Derive clausius claypeyron's latent heat equation.
- b) Find the increase in boiling point of water at 100°C. When pressure is increased by one atmosphere. Given density of water = 1 kg/m³ and latent heat of vapourisation = 2.268×10° J kg. (7+3)
- i) Explain production of low temperature by adiabatic demagnetisation.
-) Explain in brief regenerative cooling

(7+3)

Derive plank's law of radiation and deduce weins displacement law from it.

A perfectly black body of surface area 0.04m^2 is at 427°C and is placed inside an encloser at 27°C . what is the rate of loss of heat. Assume $\sigma = 5.7 \times 10^{-8} \, \text{wm}^{-2} \, \text{k}^{-4} \cdot (7+3)$

Derive Newton's formula for velocity of sound in air.

Velocity of sound in air at 14°C is 340m/sec what will be the velocity of sound when pressure of the gas is doubled and its temperature is raised to 200°C ?(7+3)

- 8. a) Derive the sabine's formula for reverberation time.
 - b) A 4m long String of mass per unit length 0.75×10⁻³ kg/m is tied at one end. A tension of 20 Newton is applied at another end. What will be the velocity of transverse waves along the string. (7+3)